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We generalize universal relations between the multifractal exponent ¢ for the scaling of the typical wave-
function magnitude at a (Anderson) localization-delocalization transition in two dimensions and the corre-
sponding critical finite-size-scaling (FSS) amplitude A, of the typical localization length in quasi-one-
dimensional (Q1D) geometry: (i) when open boundary conditions are imposed in the transverse direction of
Q1D samples (strip geometry), we show that the corresponding critical FSS amplitude A{ is universally related
to the boundary multifractal exponent aj for the typical wave-function amplitude along a straight boundary
(surface). (ii) We further propose a generalization of these universal relations to those symmetry classes whose
density of states vanishes at the transition. (iii) We verify our generalized relations [Egs. (6) and (7)] numeri-
cally for the following four types of two-dimensional Anderson transitions: (a) the metal-to-(ordinary insulator)
transition in the spin-orbit (symplectic) symmetry class, (b) the metal-to-(Z, topological insulator) transition
which is also in the spin-orbit (symplectic) class, (c) the integer quantum-Hall plateau transition, and (d) the

spin quantum-Hall plateau transition.
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I. INTRODUCTION

Localization-delocalization (LD) or Anderson localization
transitions of noninteracting electrons are continuous phase
transitions driven by disorder.'”> When disorder is weak, the
single-electron wave functions are extended over the whole
sample. Sufficiently strong disorder localizes electrons
within a finite region in space. The linear size of this region
is the localization length & characterizing the typical size of
the wave functions ¢(r)." As the disorder strength is reduced,
the localization length increases and eventually diverges at
an LD transition point. The localization length is the ana-
logue of the correlation length at nonrandom continuous
phase transitions. At the LD transition point, wave-function
amplitudes obey scale-invariant, multifractal statistics;%~
that is, the disorder-averaged gth moment of the square of
the absolute value of wave function has a power-law depen-
dence on the linear dimension L of the system, with an ex-
ponent that is a nonlinear function of ¢.>~’

Let us recall that continuous phase transitions in nonran-
dom systems are known to be quite generally described by
conformally invariant field theories. Conformal symmetry is
especially powerful in two dimensions (2D), where its pres-
ence leads to an infinite number of symmetry constraints.
This, in many cases, allows for a rather complete description
of critical properties.!®!! Effective (field) theories describing
the random LD transitions are also expected to possess con-
formal symmetry. In fact, we have recently shown by nu-
merical simulations of a standard LD transition occurring in
two dimensions, namely, of the metal-insulator transition in
the 2D spin-orbit (symplectic) symmetry class,'? that multi-
fractal exponents of critical wave functions evaluated on a
straight boundary and those at a corner are related through a
simple relation dictated by conformal symmetry.'3
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Conformal symmetry is known to impose strong con-
straints on finite-size scaling (FSS) for phase transitions in
nonrandom systems with quasi-one-dimensional (QID) ge-
ometry. For these systems Cardy has shown'* that the corre-
lation length & which characterizes the decay of the two-
point correlation function of any (conformal primary!®!3)
operator along a cylinder or a strip of width M, is related to
the bulk (x;) or surface (x,) scaling dimension of the operator
in two dimensions through

M ) 2mx,, cylinder(periodic BC), |

& | mx,, strip(open BC). ()
Here BC stands for boundary conditions imposed in the
transverse direction.

The generalization of Eq. (1) to scale-invariant disordered
2D systems was first provided in the study of random 2D
diluted ferromagnets in Ref. 16 [for the 2D bulk exponents
and QID cylinder geometry (periodic BCs)]. In a random
system the scaling of an observable (such as, for example, a
“spin”) is in general characterized by the set of scaling di-
mensions x, of all its gth moment disorder averages. Equa-
tion (1) generalizes'® to all these moments. In particular, the
correlation length &, characterizing the exponential decay of
the gth moment of a correlation function of the observable in
Q1D cylinder geometry is related to the 2D scaling exponent
by

— =2mx,, cylinder(periodic BC). (2)

& r
At the same time, by using an expansion about g=0 of the
gth moments in the 2D system and in the Q1D cylinder
geometry, it was demonstrated in Ref. 16 that such a rela-
tionship holds also for the corresponding “typical” quantities
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referring to a fixed disorder realization. In particular, if
denotes the typical'® 2D bulk scaling dimension of the ob-
servable, and if 1/¢ denotes the Lyapunov exponent charac-
terizing the inverse of the typical Q1D correlation length in
cylinder geometry, then again the relationship

— =27ay,, cylinder(periodic BC) (3)

£
holds.
Later, Refs. 9 and 17 proposed a corresponding formula in
the context of LD transitions in two dimensions,

M=27T(a’5—2) (4)
&
[the shift by two between the right-hand side of Egs. (4) and
(3) arises from different conventions]. Here, §, is the typical
Q1D localization length in cylinder geometry (the subscript
p of §, denotes periodic BCs imposed in the transverse di-
rection). The exponent ag in Eq. (4) characterizes the scaling
of a typical critical wave-function amplitude in the bulk of a
2D system of linear dimension R,

In|y(r)|*> ~ - ag InR, (5)

where the overbar stands for the disorder average. Equation
(4) has been confirmed numerically for the integer quantum-
Hall (IQH) plateau transition®'”!® and for the 2D metal-
insulator transition in the spin-orbit (symplectic) symmetry
class, 131920

We note that the relation (4), in the form presented, is
only valid for systems in which the average bulk density of
states (DOS) is constant and nonvanishing at the transition.
This is the case for LD transitions in the three Wigner-Dyson
classes. These include the IQH plateau transition and the LD
transition in the spin-orbit (symplectic) class. However, as is
now well known, there are symmetry classes in which the
DOS vanishes at the transition. This is the case, for example,
for the so-called spin quantum-Hall transition of the
Bogoliubov-de Gennes (BdG) quasiparticles in symmetry
class C?-3 (in the nomenclature of Ref. 25).

In this paper we derive a generalization of the relationship
(4) between the exponent ag and the typical Q1D correlation
length &, for LD transitions in 2D with a vanishing critical
DOS. The result is

M =277(a(b)—2+xp), (6)
P
where the exponent x,, characterizes the critical behavior of
the (bulk) DOS (x,=0 in the Wigner-Dyson classes).
Furthermore, we derive a FSS formula for the typical
Q1D localization length, when open BCs are imposed in the
transverse direction. The specific open BC we consider in
this paper is a reflecting BC which means that the system
simply ends at the boundary so that there is no current flow-
ing across the boundary. The second line of Eq. (1) suggests
that the localization length should be related to a surface
exponent characterizing multifractality of critical wave func-
tions near boundaries of disordered systems.24 Indeed, our
result is the formula
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Y o map-2+x,). (7)
where now «; is the surface (i.e., boundary) exponent char-
acterizing scaling of a typical wave-function amplitude near
a straight (reflecting) boundary. «j, is defined in the same
way as a} in Eq. (5), except that now the point r is close to
a straight boundary of the 2D system of linear dimension R.
The typical Q1D localization length &, is computed in the
geometry of a strip of width M with open (reflecting) BCs
imposed in the transverse direction (the subscript o stands for
“open”).

The organization of this paper is as follows. In Sec. II we
derive Egs. (6) and (7). In Sec. III we verify both these
equations numerically by computing the critical FSS ampli-
tude (A, or A,) of the typical QID localization length, de-
fined as

A= =2 0
M M

for both types of BCs (the factor 2 in this definition is stan-
dard convention). We verify Eq. (7) for (a) the metal-to-
(ordinary) insulator transition in the spin-orbit (symplectic)
class [class AIl of Ref. 25], (b) the LD transition between a
metal and a 7, topological insulator in the “quantum spin-
Hall” (QSH) effect?®® which also belongs to the spin-orbit
(symplectic) class [class AIl of Ref. 25], (c) the IQH plateau
transition in the unitary symmetry class [class A of Ref. 25].
[The bulk relation, Eq. (6), was already verified for systems
(a)—(c), where x,=0, in previous work.”'*!7-2] We finally
verify numerically Egs. (6) and (7) for the spin quantum-Hall
transition in symmetry class C of Ref. 25. Table I summa-
rizes the numerical results presented in detail in Sec. III.
Section IV presents our conclusions.

II. LOCALIZATION LENGTH AND MULTIFRACTALITY

In this section we provide a derivation of Egs. (6) and (7).
Let us begin with a brief discussion of the underlying as-
sumptions. We are interested in scaling properties of the dis-
order average of some physical observable [e.g., the local
DOS (LDOS)] at an LD transition point. One can recast this
disorder average into a statistical average of a properly de-
fined operator O in a certain field theory (e.g., a replica or
supersymmetric nonlinear sigma model).>* The scaling prop-
erties of O at the critical point are then controlled by the
fixed point of the renormalization-group (RG) flow of the
corresponding field theory. We are now ready to state the two
important assumptions we make in our derivation:?’ (1) the
fixed-point theory is a conformal field theory. (2) At the fixed
point of the RG transformation, the operator O is a primary'”
field operator in the conformal field theory.

A. Finite-size scaling in cylinder geometry and bulk exponents

Let us consider a disordered electronic system at its criti-
cal point, confined to a disk of radius R in the 2D x-y plane,
or equivalently, the complex plane with the coordinate z=x
+iy. We assume that all along the boundary of the disk there
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TABLE L. A list of ay, x),
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and A, for various universality classes. The values of a; marked by * are from

the references listed in the last column. Those without * are obtained in this paper. The fifth column shows
A, calculated from o using Eq. (6) and from ), using Eq. (7), combined with Eq. (8). These values of A,
should be compared with those obtained from fitting (as explained in Sec. III) and shown in the sixth column.

System BCs a X, A, from « A, from fit Ref.
Symplectic (M-I) Open 2.429+0.006 0 1.48+0.02 1.50+0.01 This paper
Symplectic (M-QSH) Open  2.091+0.002* 0 7.00+0.15 7.20+0.01 Ref. 39
IQH Open 2.385+0.003 0 1.654£0.013 1.624 =0.002 This paper
SQH in class C Periodic 2.137* 1/4 0.8225 0.8189 =0.0004 Ref. 48
SQH in class C Open 2.326" 1/4 1.105 1.101 = 0.002 Ref. 24

is a metallic electrode attached, thus allowing for the elec-
tron in the system to escape.”® This (absorbing) boundary
condition introduces a finite broadening 7 of the single-
particle levels in the system. We assume that the broadening
is on the order of the mean level spacing in the system. This
provides a regularization for Green’s function and the LDOS
as follows:

Gulz2sE) =2 9)

(2, (2)
~ E-E,*iyp

pr(0) = 510, 0.3:) G2, 2:E)]

1
== ()P (10)
7T n

/A
(E - En)2 + 772 '
Here the wave functions ,(z) of the closed system are nor-
malized in the disk: [ =g|¢/(z)|*d?z=1. The integral of the
LDOS pg(z) over the disk gives the global DOS py multi-
plied by the disk area 7R>.

Statistical properties of metallic or critical wave functions
at energy E are closely related to those of the LDOS.® In
particular, if we are interested in the scaling of the moments
of such wave functions and the moments of the LDOS, we
can write symbolically

|¢'E(Z)|2 — pE_(Z)

11
Rop, (11)

Disorder averages of powers of the LDOS pg(z) (as well as
those of products of Green’s function) are represented by
expectation values of operators in the corresponding field
theory.>* We denote this by

[pe(2)]7 ~ (O, (2)),

where the angular brackets denote the expectation value in
the field theory. Here O,(z) is the operator which corre-
sponds to the gth moment of pg(z). (We point out that here
and in what follows the power ¢ can take any real values.?)
In view of Eq. (11), the same operator represents moments of
the wave function #(z),

(R*pp)|h(2)[ ~ (O, (2)). (13)

Notice that the global DOS is self-averaging and can be
pulled out of the disorder average along with powers of the

(12)

radius R. The product R?pp 57!, where & is the mean level
spacing in the disk.

Now we concentrate on the wave functions and the DOS
at the critical energy, E=FE,, and drop the subscript E. The
global DOS p may vanish at criticality in the infinite system.
In a finite system the disorder-averaged p always has a
power-law behavior,

p~ R, (14)

where the exponent x, vanishes in the standard Wigner-
Dyson classes but is known to be nonzero in other symmetry
classes. For example, at the (2D) spin quantum-Hall transi-
tion in symmetry class C,2'-23 the exact value is known,
x,=1/42

We now make use of the previously stated assumptions®’
of conformal invariance and the fact that O, is a primary'”
conformal scaling operator with the bulk scaling dimension
x" at the LD transition. If we choose a point |z|<R close to
the origin of the disk, then the one-point function (the field
theory expectation value) scales as

(0,(2)) ~ ™.

Combining this with Egs. (13) and (14), we obtain the scal-
ing of the moments of the critical wave functions,

|¢(Z)|2q —_ R—2q—x2+qxp

(15)

(16)

for |z| <R. Notice that the exponent of R on the right-hand
side should vanish at g=0, and should be -2 at g=1 due to
the normalization of the wave function. These conditions de-
termine

x(l;:O, xlfzxp. (17)

Some important details of the definition and properties of
multifractal exponents are in order here. A slightly more
detailed®® (coarse-grained) description of multifractal wave
functions (in 2D) involves breaking the system into little
square boxes B; of size r X r labeled by i. The number of
these boxes N scales as N~ (R/r)?. One then calculates the
probability p; for an electron to be in the ith box as

pi=J |(2)Pd’z (18)
B;

and forms the so-called average generalized inverse partici-
pation ratios,
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N
Py= 2 p!=Npl. (19)
(We have assumed that the system is homogeneous after dis-
order average.) Equation (16) implies the scaling relation

_ R\ ™
Pq~<7> ’ quz(q_l)+x3_qx9’ (20)

where the set of exponents 7, is usually referred to as the
multifractal spectrum.

Note that the probabilities p; whose moments enter the
definition of P, are bounded by 0=p;=1. This bound im-
plies that P, must be a nonincreasing function of g since
pi'=p? for g, <q,. Moreover since p?=exp(q In p) is con-
vex as a function of ¢, the same is true for P, Then the
multifractal spectrum 7, in Eq. (20) must be a nondecreasing,
concave function of g. Generally speaking, there may be a
value of g=g; where 7, has a horizontal tangent. Then it
follows that 7,=const for ¢ =g Such change in the behavior
of 7, from an increasing function to a constant is often re-
ferred to as “freezing” or “termination” (see Ref. 5 for more
details). In all known cases the value g, where such termina-
tion occurs satisfies g,>0. Then we can safely use Eq. (16),
and similar equations in the following sections, in the vicin-
ity of g=0 without worrying about a possible termination
transition.

Expanding both sides of Eq. (16) in ¢ about g=0 yields
the typical scaling exponent, Eq. (5), where

dx?
aj=2-x,+ —* (21)
dq q=0
Next, let us consider the conformal mapping
M 1 <2’7T ) (22)
w=_——Ilnz, z=exp|—w]|,
2 o P M

which maps the disk to the semi-infinite cylinder of circum-
ference M in the complex w plane,

M
u=L=—InR,

O=sv<M (23)
2ar

with an absorbing boundary condition at u=L. The assump-
tion that O, is a primary conformal operator'® allows us to
relate its expectation value on the cylinder to that in the disk,

0,0 ~ (%’)p{— - m} |

dz
(O,(w)) = ‘ 2w
(24)

This immediately gives the moments of the LDOS in the
cylinder

[p(w)]? ~ exp{— %xi@— u)]. (25)

From the exponential decay®' of the moment [p(w)]? away
from the end of the semi-infinite cylinder in Eq. (25), for
sufficiently small positive values of ¢, we identify the
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“g-dependent localization length” £,(¢) in the cylinder ge-
ometry as

&(q) = (26)

7-
27qu

(Here “p” denotes again the “periodic” BCs of the cylinder.)
The typical Q1D localization length £, in cylinder geometry
is read off from the typical exponential decay of the LDOS
away from the end of the semi-infinite cylinder,

_ L—-u
lnp(w):—| |+ (27)
&
Expanding again Eq. (25) in ¢ about ¢g=0 yields
M dx’
—=2m—1  =2m(ag-2+x,), (28)
gp dq q=0

where we have used Eq. (21). This is our previously men-
tioned result, Eq. (6), which generalizes Eq. (4) to all sym-
metry classes, including those with critical DOS.

In Sec. Il D we numerically verify Eq. (6) for the spin
quantum-Hall effect (symmetry class C) by computing nu-
merically the FSS amplitude A,=2§,/M of the typical Q1D
localization length &, in cylinder geometry; according to our
above-obtained result (28) this quantity is predicted to equal

1
ANj=—7 29
r 7T(a(b)—2+xp) 29

with X,= 1/4.

B. Finite-size scaling in strip geometry and surface (boundary)
multifractal exponents

We now apply the same arguments to discuss finite-size
scaling in the presence of open (reflecting) BCs in the trans-
verse direction (strip geometry).

For this purpose we first consider the operator O, placed
close to the origin in the interior of the half disk |z
=R, Im z=0. The boundary of the system on the real axis
is assumed reflecting, and the rest is attached to a metallic
lead, as in the previous section. In this situation the expecta-
tion value of O,(z) for |z|<R is given by??

(0,(2) ~ R, (30)

where the boundary scaling dimension x‘; (the superscript s
stands for “surface”) is typically different from the bulk di-
mension xZ. In analogy with Eq. (16) we now have, upon
making again use of Eq. (13),

()29 ~ R0, (31)

where the same exponent x,, (a bulk exponent) enters through
the global DOS. Note that Eq. (31) still implies xj=0 but
now, in the boundary case, there is no restriction on xj [in
contrast to the bulk case: see Eq. (16) and the subsequent
text]. Also, in complete analogy to the bulk case, the expo-
nent of R in Eq. (31) must be a monotonic function of g.
Upon expanding both sides of Eq. (31) in g about g=0, one
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TABLE II. A list of parameters obtained or used in the FSS analysis for the scaling functions defined in Egs. (41) and (57). Here A, v,
and y are obtained through fitting. N; and N, denote the numbers of data points and fitting parameters used in the fitting procedure,
respectively. The fitting functions are truncated at the orders P and Q. x> and g denote the values of chi squared and the goodness of fit

probability, respectively.

System BCs Scaling function A, v y Ny N, P Q X g
Symplectic (M-I) Reflecting Eq. (41) 1.50+0.01 2.79+0.03 -1.03*x003 8 9 2 2 862 02
Symplectic (M-QSH)  Reflecting Eq. (41) 7.20+0.01 -0.81+0.08 8 3 0 0 72 02
IQH Reflecting Eq. (41) 1.624 =0.002 2.55+0.01 -1.29+x0.04 134 6 3 2 1440 02
SQH in class C Periodic Eq. (57) 0.8189*+0.0004 1.335*+0.016 -094*0.01 73 8 2 2 56.2 0.7
SQH in class C Reflecting Eq. (41) 1.101£0.002  1.335+0.005 -1.05*0.02 93 9 3 2 86.1 04
obtains the scaling exponent ¢ of the typical wave-function M d_x:z )

amplitude at the boundary, §_ = qu =m(ap—2+x,), (39)

0 q=

In|i(z)|* ~ - af In R, (32)
where now
d )
ay=2-x,+ 4| (33)
dq q=0

Next, in order to relate this to the strip geometry, we use the
conformal transformation

M
w=—1In gz,
ar

7= exp(%w) , (34)

which maps the half disk to a semi-infinite strip of width M
in the w plane

w=u+iv, O=v=M. (35

The expectation value on the strip now follows again since
O, as a primary'® conformal operator, transforms simply
under conformal transformations,

Xq<(94(z)> ~ (%)xqem{— %x;(L - u)} .

d
(O,w)) = ’ ﬁ
(36)

From this we obtain the exponential decay of the moments of
the LDOS away from one end of the strip,

[T ~ exp[— (L - u>} . (37)

As in the bulk case, the exponential decay?! of the right-hand
side in Eq. (37), for sufficiently small positive values of ¢,
gives the “g-dependent Q1D localization length” along the
strip

t@)=L. (38)

As before, the typical Q1D localization length &, in strip
geometry is obtained by expanding both sides of Eq. (37) in
q about g=0,

where we have used Eq. (33). This is our previously an-
nounced result from Eq. (7).

In subsequent sections we verify Eq. (7) for various LD
transitions by computing numerically the FSS amplitude
A,=2¢,/M of the Q1D typical correlation length &, on the
strip (o=open, reflecting BCs) which, according to our re-
sult, is predicted to be equal to

2

o= 77(0[6_2"'%). (40

III. NUMERICAL RESULTS

In this section we present the results of our numerical
simulations supporting Egs. (29) and (40). For convenience,
we have gathered all the relevant fitting parameters and other
numerical data in a single Table II.

In this section we have to distinguish off-critical and criti-
cal values of the Q1D localization lengths, & and &, and the
corresponding FSS amplitudes, A and A. (for both periodic
and open BCs). All £ and A that have appeared in the previ-
ous sections denoted values at the critical point.

A. Spin-orbit (symplectic) symmetry class

To compute the localization length at the LD transition in
the symplectic class, we employed the so-called SU(2)
model,® a tight-binding model on the square lattice, with
random on-site disorder and fully random SU(2) hopping.

1. Localization length (strip geometry)

We obtained the typical localization length from the
smallest Lyapunov exponent of transfer matrices for very
long Q1D lattices. We imposed hard-wall, i.e., reflecting BCs
in the transverse direction and hence our Q1D samples had
strip geometry. Our systems had a maximum size M =128 in
the transverse direction. Figure 1(a) shows the FSS ampli-
tude A,=2&,/M of the typical Q1D localization length as a
function of the on-site disorder strength W for various system
sizes M and at fixed energy E=0 (band center). The curves
for the various system sizes intersect at different points re-
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FIG. 1. (Color online) (a) Dependence of A, on W at E=0 for
various values of M. Ko at E=0. (b) Scaling plot of K,, at E=0, see
Eq. (43). The obtained parameters are A,.=1.50%0.01,
W.=6.192*+0.007, v»=2.790%0.025, y=-1.026%0.03, a,
=-1.69%0.03, a,=0.70£0.02, by=1.24%*0.03, b;=-2.36*0.08,
and b,=4.7%=0.3.

flecting large finite-size effects, in contrast to the case of
periodic BCs.??

To determine the critical value of the FSS amplitude A, .,
we performed a FSS analysis incorporating corrections to
scaling arising from the leading irrelevant scaling variable.?*
Specifically, we took a scaling function for the FSS ampli-
tude of the form A=F(yM"",(M"), where y is the relevant
scaling variable, and ¢ is the leading irrelevant scaling vari-
able whose scaling exponent y<<0. The exponent v charac-
terizes the divergence of the 2D localization length ¢ upon
approaching the LD transition point, £~ x~”. We expanded
the scaling function around the critical point W=W,_, setting
x=(W-W.)/W,,

P 0
A= Apet 2 a,(xM"P+ MY b (xM")1.  (41)
p=1 q=0

We fitted the numerical data to Eq. (41) with P=0Q=2 by
taking W, a,, b,, v, and y as fitting parameters. We obtained

W,.=6.192 = 0.007, A,.=1.50=0.01,

o,c
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v=279*+0.03, y=-1.03=*=0.03. (42)

The details of the fitting are summarized in Table II.

These results are in good agreement with those obtained
by Asada et al.’® for the SU(2) model with periodic BCs:
W,.=6.199+0.003 and »=2.75*0.04 at E=0. The good
quality of the fit can be seen from the scaling collapse,
shown in Fig. 1(b), of the data for the corrected FSS ampli-

tude A, defined by

0
K= A= M2 b, (xM"7)1. (43)
q=0

2. Surface multifractal exponent o

In our previous publication'? we reported the value «
=2.417 = 0.002 for the surface exponent, which was obtained
from numerical simulations on L X L lattices of system sizes
up to L=120. We performed averaging over more than 6
X 10* disorder realizations. The lattices had periodic BC im-
posed in one of the two directions but open BC in the other
direction, so our system had the geometry of a finite cylinder.
Here we update the value for o reported in our previous
work.!3 We use larger system sizes up to L=180, and average
over up to 10° disorder realizations.

The surface exponent «f was obtained from the system
size dependence of the wave-function amplitude in the vicin-
ity of the boundary, according to

{In|(x)*)) ~ = @ In L+ c. (44)

Here x=O(L%), L>1, and c is a constant of order L°. The
double angular brackets represent both ensemble average and
spatial average along the boundary of the cylinder in each
disorder realization. First we tried a linear fitting to Eq. (44)
of our numerical data for the left-hand side of Eq. (44), using
system sizes 24 < L < 180, with two fitting parameters «, and
c. This resulted in the value

ay=2.4195 = 0.0013. (45)
Substitution of this value into Eq. (40) gave
A, =1.518 = 0.005. (46)

This analysis, however, ignored corrections from irrelevant
scaling variables and was not quite correct since we now
know from the previous section that such corrections are
appreciable for the FSS amplitude A for open BC. We there-
fore reanalyzed the data, assuming scaling with corrections
from the leading irrelevant variable.'® We define

2
MYy Lo,

A =
() InL In L

where we take y=—1, as suggested by Eq. (42). The fitting of
the same data to Eq. (47) yielded

al =2.429 = 0.006, (48)

which leads to
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A,.=148+0.02 (49)

with the help of Eq. (40). We see that the A, . obtained from
the transfer-matrix method (42) is consistent with these re-
sults. The value of ;) reported in Eq. (48) has larger error
bars, which needs to be improved in future numerical work.

B. Metal-to-Z,-topological-insulator transition
in quantum spin Hall systems

The 7, topological insulator is a time-reversal invariant
topological insulator in two dimensions, which possesses a
topologically protected Kramers pair of extended edge states
at its boundaries.® The Z, topological insulating states can
be realized in materials with strong spin-orbit interactions,
as evidenced by recent experiments on HgTe/(Hg,Cd)Te
quantum wells.?® In the presence of disorder, this system
undergoes a two-dimensional metal-insulator transition
from a 7, topological insulator to a metal, as one changes the
Fermi energy. On symmetry grounds, this LD transition
is expected to belong to the spin-orbit (symplectic) sym-
metry class.’’ Indeed, the critical exponent v for the
diverging localization length (a bulk property) at the
metal-to-Z,-topological-insulator transition is found to agree
with the value obtained for the SU(2) model,>” which de-
scribes the metal-to-(ordinary) insulator transition in this
symmetry class. Similar agreement is found for the multi-
fractal exponents for critical wave functions in the bulk.3
However, the multifractal exponents characterizing wave-
function amplitudes at the sample boundary turn out to be
different at the two metal-insulator transitions.

Here  we show  that, at the  metal-to-Z,-
topological-insulator transition, the FSS amplitude A, . [Eq.
(8)] for the typical Q1D correlation length in strip geometry,
is related by conformal invariance to the boundary multifrac-
tal exponent ¢, at the same transition.

1. Localization length (strip geometry)

To compute the localization length at the
metal-to-7Z,-topological-insulator transition, we employed
the quantum spin-Hall network model.*’¥ An important pa-
rameter in this network model is the one controlling the
probability of tunneling at the nodes of the network, which
we denote by X. The numerical results shown below were
obtained at the critical point X.=0.971 with fully random
SU(2) spin-rotation symmetry on each link.*® Figure 2 shows
the dependence of the FSS amplitude A,(M):=2&,(M)/M of
the typical Q1D localization length &,(M) on a strip of width
M (M=8,10,12,16,24,32,48,64). Here M is the number of
nodes of the network model in the transverse direction across
the Q1D strip. This corresponds to transfer matrices of size
4M X 4M. In order to find the critical value A, . of the FSS
amplitude A, in the large M limit, we assumed that A, at
X=X, has a power-law finite-size correction due to a leading
irrelevant variable with dimension y <0

Ay(X=X) = Ay o+ bM”. (50)

Fitting the data to this form (see Fig. 2), we obtained
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FIG. 2. M dependence of A, at the metal-to-topological quan-
tum spin-Hall insulator transition. The solid curve is a fit to Eq. (50)
with A, ,=7.20%0.01, y=—0.81%+0.08, and by=-1.0+0.1.

0,c

A,.=7.20*0.01 (51)

with y=—0.81£0.08 and by=-1.0=0.1. The details of the
fitting are summarized in Table II.

2. Surface multifractal exponent o

The surface multifractal exponent at the metal-to-Z,-
topological-insulator transition was obtained in Ref. 38. By
using larger system sizes this value was recently improved in
Ref. 39 to

a}y=2.091 = 0.002. (52)

Substituting the improved value into Eq. (40) yields the FSS
amplitude

A,.=7.00 *0.15. (53)

This value is consistent with Eq. (51). The larger error bar in
Eq. (53) results from the fact that the denominator in Egq.
(40) (with x,=0) contains ap—2=0.091*0.002. Neither of
the numerical analyses in Refs. 38 and 39, used to obtain Eq.
(52), included effects of the leading irrelevant variable, in
contrast to Eq. (51). These effects may influence the value of
aj, and possibly result in better agreement with Eq. (51).

C. Plateau transition in the integer
quantum-Hall effect

To compute the localization length &, and the surface mul-
tifractal exponent ap at the plateau transition in the IQH
effect, we employed the Chalker-Coddington network
model**#! in strip geometry with M nodes in the transverse
direction across the strip. This corresponds to transfer matri-
ces of size 2M X2M. The plateau transition is reached by
tuning a parameter 6 which controls the tunneling probability
at the nodes of the network model. For this model the critical
value 6. is known exactly.

1. Localization length (strip geometry)

The typical localization length &, in Q1D strip geometry
was computed numerically from the smallest Lyapunov ex-
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FIG. 3. (Color online) (a) Dependence of A, on the node
parameter 6 in the Chalker-Coddington model of the strip geometry.
The vertical dashed line indicates the critical point 6=6,. Inset:
M dependence of A, at 6=6,; the solid curve is a fit to Eq. (50).
(b) Scaling plot from FSS analysis including corrections from
the leading irrelevant scaling variable. The parameters used for
the plot are v=2.55*+0.01, a;=2.518*0.016, a,=2.179*=0.027,
a3=1.393+0.051, by=1.26*0.7, b;=2.016%=0.086, and b,
=-0.73%+0.26.

ponent of the transfer matrices. The largest system size (the
number of network model nodes in the transverse direction)
that we studied, was M =64. Figure 3(a) shows the FSS am-
plitude A,=2&,/M of the typical localization length as a
function of the network model tunneling parameter 6 for
various transverse system sizes M.** For §> 6, the network
model is in the quantum-Hall phase.*? As seen from Fig. 3,
the crossing point of the curves moves towards =60, as M
increases, indicating the presence of finite-size corrections.
To find the critical value of the FSS amplitude A, of the
typical Q1D correlation length in the large M limit, we fitted
the data to Eq. (50) [see the inset of Fig. 3(a)], to obtain

A,.=1.624 * 0.002, (54)

y=-1.29%0.04, and by=1.26 = 0.7. The details of the fitting
are summarized in Table II. Figure 3(b) shows the data col-
lapse from the FSS analysis using Egs. (41) and (43) with
x=(6-0,)/6, and the values of A,., y, and b, obtained
above. This FSS analysis also yielded »=2.55*0.01 for the
critical exponent of the diverging (2D bulk) localization

PHYSICAL REVIEW B 82, 035309 (2010)

FIG. 4. The Chalker-Coddington network model on a cylinder.

In the notation of Sec. I C2 L=3 on this figure. There are 4L?
=36 links and the unitary evolution operator U is a 36 X 36 matrix.

length, which is close to the value obtained in a recent large-
scale numerical study, v=2.593 = 0.006.%3

2. Surface multifractal exponent o

The surface multifractal exponent ¢ at the plateau tran-
sition was recently obtained by the present authors** and by
Evers et al.® It was found in these works that the multifrac-
tal analysis for the Chalker-Coddington model suffers from
large finite-size corrections. To reduce these corrections, we
have used, in the multifractal scaling analysis in Ref. 44,
numerical data obtained only for large system sizes. Here we
used an alternative approach by taking into account correc-
tions to scaling arising from a leading irrelevant scaling vari-
able using Eq. (47).

The geometry of the Chalker-Coddington network model
that we used is shown in Fig. 4. There are two types of nodes
forming two sublattices (denoted A and B in the figure), such
that the A sublattice has the size LX L (L=3 in the figure).
The links of the network form zigzag-shaped rows and col-
umns; there are 2L such rows and 2L such columns so that
the total number of links is 4L2. Integer x and y coordinates
are assigned to the centers of links. We imposed periodic BC
in the vertical y direction and reflecting BC in the horizontal
x direction. The links in the first and the last columns at x
=1 and x=2L are called the edge links. The discrete time
evolution of wave functions defined on links of the network
model is governed by a unitary evolution operator U for one
discrete time step, which is determined by the scattering S
matrices at the nodes of the network model.*¢ In our case this
operator is a 4L? X 4L? unitary matrix. For each disorder re-
alization, we obtained one critical wave function that is the
eigenvector of U at =6, and whose eigenvalue is closest to
unity among all the eigenvectors. The largest system size we
studied was L=180, and the disorder average was taken over
3 X 10 realizations for L=<60, over 5 X 10° realizations for
L=80, and over 2 X 10° realizations for L=120, 180.

Figure 5(a) shows the x dependence of ({In|i(x)|%)),
where the double angular brackets stand for both the average
over disorder realizations and the spatial average along the
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FIG. 5. (Color online) (a) Spatial dependence of logarithm of
probability density ((In|i(x)[*)). The system size is changed as L
=15, 20, 25, 30, 35, 40, 50, 60, 80, 120, and 180 from the top to the
bottom. (b) Dependence of A(x):=—({In|¢{(x)|?))/In L on the effec-
tive system size L/l at x=1 (squares, [=1), 2 (open circles, [=1),
and at edge plaquettes with coarse graining (filled circles, [=2),
where [ is the (linear) size of boxes used to define the coarse-
grained wave-function probabilities. The solid curves are the fits
to Eq. (47). Also shown by crosses is the dependence of
2[1+1/7A(6=0,)] on the width M and its fit (dashed curve) to
Eq. (50).

periodic y direction. We clearly observe in Fig. 5(a) Friedel-
type oscillations near the edges of the cylinder, which be-
come less pronounced as L is increased. [Such oscillations
are absent in the SU(2) model discussed in the previous sec-
tion.] Figure 5(b) shows how A(x)=—{{In|¢(x)|*))/In L ap-
proaches a constant value with increasing L at the left bound-
ary (x=1,2). The solid curves show the fitting of A(x) to Eq.
(47) at x=1 (squares) and x=2 (open circles). To minimize
the corrections coming from the Friedel-type oscillations, we
defined the coarse-grained wave-function amplitude on each
plaquette and calculated the corresponding A for the
plaquettes along the edge (shown as filled circles). Fitting
this coarse-grained data to Eq. (47) with y=-1.29 obtained
in Sec. I[II C 1 yielded

a}=2.385 + 0.003, (55)

where the error bars reflect only statistical errors. This result
is consistent with that of Ref. 44 (a{,=2.386%0.004). Figure
5(b) shows that fitting of A(x=1) and A(x=2) gives similar
values of ;. Substituting Eq. (55) into Eq. (40) yields
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A,.=1.654+0.013, (56)

which should be compared with A, .=1.624+0.002 [Eq.
(54)] obtained from the transfer-matrix calculation. As we
see in Fig. 5(b), finite-size corrections to A and A, are still
quite large at L=180. This makes the extrapolation of these
quantities to L— o difficult; we cannot exclude the possibil-
ity of having systematic errors in addition to the statistical
errors included in Egs. (54) and (56). Given the presence of
this uncertainty, we conclude that our numerical results are
consistent with Egs. (7) and (40).

D. Spin quantum-Hall plateau transition of BdG
quasiparticles in symmetry class C

In this section we discuss the verification of Egs. (6) and
(7) for symmetry class C, which is known to possess a van-
ishing critical DOS (x,>0). In our simulations we used an
appropriate generalization of the Chalker-Coddington net-
work model,*” which we refer to as the class C network
model. This model has a control parameter € (in the notation
of Ref. 47), and is critical at e=0. Exact values for critical
exponents, v=4/3 and x,=1/4, were obtained through map-
ping to classical percolation.?!?> The exact values of the
bulk?® and surface’* multifractal wave-function exponents
% are also known at g=2,3. However, exact results for the
FSS amplitudes of the typical Q1D correlation lengths, A, .
and A, ., and the typical wave function scaling exponents
ab* are not available.

1. Localization length (cylinder and strip geometries)

We numerically obtained the FSS amplitudes of the typi-
cal Q1D localization length of the class C network model for
both cylinder and strip geometries. A previous numerical
study*” of FSS of the typical localization length in cylinder
geometry did not report the value of A, .. Here we present
results for the FSS amplitudes A, . and A, . corresponding to
cylinder and strip geometries, respectively.

Cylinder geometry. Figure 6(a) shows the dependence of
the FSS amplitude A, of the typical Q1D correlation length
on the parameter € for various values of the transverse width
M, obtained in cylinder geometry. The FSS amplitude A, is
symmetric about the critical point €.=0 when periodic BCs
are imposed. Hence in the FSS analysis we have to use an
expansion in even powers of €,

P [
Ap= A, + El a,(eM")? + MEO by, (eM"")*1. (57)
p= q=
The result of fitting of the data in Fig. 6(a) to Eq. (57) is
shown in Fig. 6(b). The dependence of A,(e,) on the width
M at the critical point €,=0 is plotted in Fig. 6(c). We ob-
tained

A, . =0.8189 + 0.0004 (58)

and v=1.335%0.016. The details of the fitting are summa-
rized in Table II. The latter result is consistent with the exact
value v=4/3, indicating good accuracy of our numerical
results.
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FIG. 6. (Color online) (a) Dependence of A, on € for several
values of M in the class C network model of cylinder geometry.
A critical point is known to be located at €.=0. (b) Scaling plot
of Kp, obtained after subtracting corrections to scaling from a
leading irrelevant scaling variable. The parameters used for the
plot are A, .=0.8189+0.0004, »=1.335+0.016, y=-0.94+0.01,
a,=—1.66*+0.10, a4=3.64+0.33, by=0.185+0.003, and b,
=0.58=0.31. (c) M dependence of A, at e=0. The solid curve is a
fit to Eq. (50).

Strip geometry. Figure 7(a) shows the FSS amplitude of
the typical Q1D correlation length in strip geometry. With
reflecting BCs imposed in the transverse direction, the model
possesses edge states for €>0 (the spin quantum-Hall phase,
possessing topological order).** Since A, is not a symmetric
function of €, we use the FSS function in Eq. (41). Figures
7(b) and 7(c) show the result of the FSS analysis and the
width M dependence of the FSS amplitude A (e,) for the
typical correlation length in the strip, respectively. From this
analysis we obtained

A,.=1.101 * 0.002 (59)

and v=1.335%0.005. The details of the fitting are summa-
rized in Table II.

2. Multifractal exponent «

The bulk and surface multifractal exponents a and o) for
the class C network model have been obtained numerically

in Refs. 24 and 48,
ah=2137, o) =2.326. (60)

Substitution of these values into Egs. (29) and (40), respec-
tively, with x,=1/4 yields
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FIG. 7. (Color online) (a) Dependence of A, on e for
several values of M in the class C network model of strip geometry.
The critical point is located at €.=0. (b) Scaling plot of A, from
the FSS analysis with subtraction of corrections from a
leading irrelevant scaling variable. The parameters used for
the plot are A, .=1.101=0.002, »=1.335+0.005, y=-1.05*0.02,
a;=2.225%0.024, a,=3221*0.083, a3=291%x0.20 b,
=0.960+0.015, b;=1.846=0.095, and b,=2.26*+0.54. (c) The M
dependence of A, at €=0. The solid curve is a fit to Eq. (50).

A,.=0.8225 A,.=1.105. (61)

These values are consistent with the values presented in Eqgs.
(58) and (59) obtained by our FSS analysis.

IV. CONCLUSIONS

In this paper we have generalized the formula relating the
multifractal exponent « of the typical wave-function ampli-
tude in a 2D sample to the FSS amplitude A, of the typical
localization length in a QID sample. Our generalization is
twofold, resulting in Eqgs. (6) and (7). Our Eq. (6) extends the
relation to unconventional symmetry classes where the glo-
bal density of states vanishes at criticality. Our Eq. (7) ex-
tends the relation to the case when the Q1D sample has strip
geometry, instead of cylinder geometry which was always
considered in earlier studies. In this case the multifractal ex-
ponent «, describes the scaling of typical wave-function am-
plitude near the sample boundary.

We have verified generalized Egs. (6) and (7) numerically
for systems in four different universality classes: (a) the
metal-to-insulator transition in the spin-orbit (symplectic)
symmetry class, (b) the metal-to-(Z, topological insulator)
transition also in the spin-orbit (symplectic) class, (c) the
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integer quantum-Hall plateau transition, and (d) the spin
quantum-Hall plateau transition. Our numerical results are
summarized in Tables I and II.
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